
LibreFoodPantry: Developing a Multi-Institutional,
Faculty-Led, Humanitarian Free and Open Source

Software Community
Karl R. Wurst

Christopher Radkowski
 Worcester State University

 Worcester, MA USA
kwurst@worcester.edu

cradkowski@worcester.edu

Stoney Jackson
 Heidi J. C. Ellis

Western New England University
 Springfield, MA USA

stoney.jackson@wne.edu
heidi.ellis@wne.edu

Darci Burdge
Lori Postner

 Nassau Community College
 Garden City, NY USA
 darci.burdge@ncc.edu
lori.postner@ncc.edu

ABSTRACT
Engaging students in humanitarian free and open source software
(HFOSS) projects allows them to gain real-world software
development skills while helping society. Participating in an
existing HFOSS project, although ripe with learning opportunities,
presents a number of hurdles for faculty and students. An
alternative to joining an existing HFOSS project community is to
participate in a faculty-led HFOSS project. These projects provide
the instructor with more control over the learning environment, but
often lack an active community outside of the classroom. This
paper describes a multi-institutional effort to engage a community
of developers in creating humanitarian open source projects to
support their on-campus food pantries. Food insecurity on campus
has become a national concern and many institutions have, or are
starting, food pantries to support the student, staff, and faculty
community.

Starting a faculty-led HFOSS project involves making decisions
not only about the features of the project but also about community
norms, tool choices, project development workflow, and inter-
institution cooperation. This paper provides an overview of the
creation of LibreFoodPantry, a community who is developing a
suite of projects that support on-campus food pantries. It describes
instances of using LibreFoodPantry’s projects in various classroom
settings, the lessons learned from these experiences, and the
resulting discussions and decisions made by the LibreFoodPantry
Coordinating Committee. This process has led to a community
dedicated to easing the on-ramp for faculty who want to help their
students contribute to an HFOSS project.

KEYWORDS

Open Source, Computing for Social Good, Software Development,
Project Management

ACM Reference format:

Karl Wurst, Christopher Radkowski, Stoney Jackson, Heidi Ellis, Darci
Burdge and Lori Postner. 2020. LibreFoodPantry: Developing a Multi-
Institutional, Faculty-Led, Humanitarian Free and Open Source Software
Community. In Proceedings of 2020 ACM Technical Symposium on
Computer Science Education (SIGCSE ‘20), March 11-14, 2020, Portland,
OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3328778.3366929

1 INTRODUCTION
Over the past decade, a growing community of faculty have
involved their students in existing humanitarian free and open
source software (HFOSS) projects. HFOSS projects address a
societal need such as open medical records systems, disaster
management, microfinance, or education. The ability to help others
is highly valued among all students in computing [21] and an
emphasis on how computing can positively affect one’s community
is especially engaging for women [17]. HFOSS projects can
provide learning environments that allow students to see how their
technical expertise can help others.

The focus of previous HFOSS work has been two-fold: expanding
the community by preparing faculty to support student learning in
HFOSS [2, 14, 15] and researching the impact of student
participation in HFOSS [1, 7, 12]. Outcomes of this work indicate
that students report a perceived learning of software engineering,
technical, and professional skills [4, 7, 8, 11].

Despite the positive impact for students, finding an appropriate
existing HFOSS project to use in a class setting is one of the biggest
factors that deters faculty from engaging their students with
HFOSS projects [14]. Faculty who have facilitated student
participation in HFOSS are often teaching senior level software
engineering or capstone classes, where students have enough
experience to learn new languages and frameworks as part of the
course. Integrating HFOSS into lower level courses is much more
challenging, as inexperienced students can be easily overwhelmed.
The language, scale, platform/frameworks, domain knowledge,
project community and culture, contact person, project timeline and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SIGCSE ‘20, March 11-14, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-6793-6/20/03…$15.00
https://doi.org/10.1145/3328778.3366929

roadmap, etc. are all factors that influence if a specific project is
appropriate for classroom adoption [5, 14, 16].

If an appropriate existing HFOSS project is found, it is likely that
the project may not be prepared to receive a large influx of new
contributors that intend to work as one or more teams. The
instructor may wonder, “Where do they fit in?”, “What should they
work on?” and “Who can answer their questions and review their
work in a timely fashion?” Except in rare cases, the instructor can’t
answer any of these questions. Although most open source projects
provide instructions for individuals to contribute to their project,
they lack instructions for how one or more teams may contribute to
the project. They may assume that any team that would want to
contribute to their project already knows how to work as a team
using modern development practices. This is often not true of
classes of students who will be engaging in these projects.
To alleviate some of these hurdles, a subgroup of the HFOSS
faculty community are shifting their focus to starting faculty-led
HFOSS projects designed to address local, institutional needs.

Projects developed for a single client often lack a rich and robust
community. But these community interactions are one of the key
benefits of involving students in HFOSS, providing students and
faculty with professional interactions beyond their local settings.
With this in mind, LibreFoodPantry (LFP), a community who is
developing a suite of HFOSS projects designed to help the
volunteers at three different institutions run their on-campus food
pantries, was created. Students interact with a real-world client, the
food pantry, with one another across institutions, and learn about
open source tools and processes, all while helping their campus
communities. As a multi-institutional effort, the faculty and
students involved are focused on defining LFP as a community
where classes are welcome to join and leave the project as
necessary based upon the academic needs of the course. The issue
of how teams work is addressed by defining a clear onboarding
process for a shop of developers. A shop mirrors the structure of a
class with the instructor playing the role of a shop manager and the
students playing the role of shop developers.

2 RELATED WORK
Building a faculty community around an HFOSS project leverages
earlier work where an HFOSS project was shared among multiple
academic institutions and open source developers [6]. In this case, the
project originated in the GNOME community and the academic
handoff failed due to a combination of the project technologies
having a significant learning curve, a lack of instructor time, and no
existing active community around the project.

Although having students involved in existing HFOSS projects
provides a wealth of learning opportunities, research has
demonstrated that there are a number of additional hurdles to
adoption [10, 18, 19, 20] including finding the right project, time to
develop curricular materials, and teaching a class where using
HFOSS seems appropriate [14]. Once a faculty member is involved
with a project, they may encounter problems with the academic
calendar not mapping to the community timeline, need for issues

that are appropriate for the students’ level of education, as well as
students’ uncertainty about their abilities to contribute to a large
HFOSS project. As an academic community, LFP is sensitive to the
needs of faculty and their students. Faculty are steering the
direction of the project and providing curricular support, thereby
reducing the barriers to entry and adoption. Unlike the CO-FOSS
model [22] where the project is developed by a class, handed over
to the client at the end of the term, and then maintained by a local
company, LibreFoodPantry projects are envisioned as ongoing and
evolving across academic terms, having multi-institutional
participation, and being used by multiple clients.

In a multi-institutional project, faculty from different institutions
can support each other in project management responsibilities.
Students from different institutions can help each other creating
richer interactions. Projects can share clients and users at different
institutions. Over time, we expect a multi-institutional effort to
generate a robust community that will help sustain the project over
the long term and provide students, faculty, clients, and users with
a larger support network with rewarding interactions.

Having real and involved clients and users are extremely valuable
to any project. Real clients and users help to establish requirements,
answer questions, and provide valuable feedback on work as a
product is being developed. In a class project, real clients and users
also provide students with additional motivation as they realize that
someone is genuinely interested in their work. Another advantage
of LFP projects is that most classes can easily find an operating
food pantry. Their school may have a food pantry on campus, their
campus may be considering opening a food pantry, or there is likely
a food pantry in their local area. In cases where a local client cannot
be found, clients from other areas or institutions may serve as a
client for a class from afar [22].

3 BACKGROUND

3.1 History
In November 2015, Nassau Community College (NCC), part of the
State University of New York (SUNY) system, opened the NEST
on-campus food pantry. Two CS professors began a multi-year
conversation about how the food pantry operates, its biggest
technology needs, and how a class of CS students could help.

Inspired by the effort at NCC, as part of a pre-symposium event at
SIGCSE 2018, a group of faculty evaluated existing software for
managing food pantries and food banks. While numerous projects
exist, none were suitable for use in a class for various reasons, such
as being closed source, lack of community, licensing issues, level
of maturity, etc.

In Spring 2018, Western New England University (WNE)
announced plans to open the BEAR Necessities Market on-campus
food pantry. In Fall 2018 two CS & IT professors approached the
pantry organizers to discuss having CS majors develop an HFOSS
project for their pantry in a new senior capstone course.

In Fall 2018, Worcester State University (WSU) announced that it
would open Thea’s Pantry. A CS professor contacted the pantry
organizers to offer the services of his software development
capstone course to develop software to help manage the pantry.

These faculty are part of a group active in encouraging faculty to
incorporate HFOSS participation into their curricula. During a
research meeting in January 2019, they brainstormed the idea to
support faculty-led HFOSS projects which would provide real
software development projects, but in a more academically friendly
environment. Realizing that a number of their institutions either had
a food pantry or were about to open a food pantry, they decided to
create a suite of HFOSS projects to provide food pantries with free
and open source software, while providing students and faculty
with a project that they could contribute to.

3.2 Pilot
During the Spring 2019 semester three institutions piloted using
LFP’s projects in a single course per institution. Prior to the start of
the semester, all instructors agreed to use GitHub to host the LFP
repositories and to use Slack to facilitate discussion within each
course and across institutions. They also agreed that students
should have some control of the development of LFP but did not
make any decisions as to how that would work.

At NCC, LFP was used in the Mobile Application Development
course, a third or fourth semester course for CS majors. Students
first learn Android basics and become familiar with the
development environment and application lifecycle. Then students
learn about the previous work on the NEST project and its technical
needs based upon meetings with the volunteers who manage the
food pantry. They brainstormed ways to improve the existing
project and worked both individually and in teams to implement
their ideas. Students were introduced to git and learned to work
collaboratively using the git workflow developed for the project.

At WNE, LFP was used in a one-semester Computer Science
Senior Capstone project in the last semester of students' senior year.
Five 3-4 member teams worked to design and develop a single web-
based food ordering system using a Scrum-based development
process. Students chose the technological platform and
implemented the infrastructure for further development.

At WSU, LFP was used in a one-semester Software Development
Capstone course in the last semester of students’ senior year. Two
5-member teams (one per section) worked on a LFP project to
design a web-based guest intake application. In addition, a cross-
section sub-team developed an API service for other applications
to use the USDA’s FoodKeeper data, with the NCC class as a client.

3.3 Mid-Semester Discussions
The faculty met weekly throughout the semester, providing updates
on the status of their classes, and discussing approaches to having
their classes work within the project. By March technical issues of
student communication and workflow led to discussions on the
larger issues of culture, community, decision-making, governance,
and welcoming new faculty and classes into the project. Decisions

were made about how to make the project more inviting to
outsiders, how the group could provide transparency by making
meeting minutes and communications public, ways to standardize
workflow and documentation, and creating a community repository
to house a governance model and code of conduct.

3.4 Post-Semester Retreat
In June 2019, the LFP Coordinating Committee held a retreat to
reflect on the experiences from the pilot courses, establish
community norms, and develop a cohesive view of the product(s)
that LFP intends to build and support. The faculty who taught the
pilot courses, two additional faculty members who planned to use
LFP in Fall courses, and a WSU senior researching tools to support
agile and open-source software development, attended.

In an agile-style retrospective, the participants identified what
worked well and was important to the success of their courses, what
did not work well and needed improvement, and ideas for
improving those things that did not work well. During the retreat,
the participants drafted several important documents as the
foundation of the LFP community and reaffirmed the open source
license that all projects were using for source code. In addition to
these basic documents, they began to sketch out the concept of a
development “shop” and a common workflow by which
development shops can contribute work as one or more teams. The
retrospective is discussed in section 4.

4 CHALLENGES AND SOLUTIONS
When starting LFP the group didn’t realize the number of decisions
that they would have to make to start a faculty-led HFOSS
community. It is difficult to make long-term decisions that allow
for future participation among a larger group of academics when
working across institutional settings. The following sections
describe the major areas that required decisions and some of the
discussion and rationale that went into them.

4.1 License
One of the first decisions made, even before the pilot courses, was
which license we would use for the source code of LFP projects.
Without an initial license, the work completed in the pilots would
be unlicensed. This means that no one could do much of anything
with the code without permission of every contributor of the project
(because each contributor holds the copyrights for their individual
contribution). Also, relicensing a project would be extremely
difficult and becomes more difficult as more developers contribute
work to the project.

A free and open source project is free and open source because of
its license. Because there are many different open source licenses
it is important to choose one that fits the goals, values, and
necessities of the project. We wanted LFP projects to be free
forever. That is, however its projects evolve in the future, everyone
will forever have the same freedoms to use, redistribute, and change
the projects as they do today. To achieve this, we chose to license
all source code under the GNU Public License version 3 (GPLv3).

Content is licensed under the Creative Commons Attribution-
ShareAlike 4.0 International license (CC-BY-SA 4.0).

4.2 Community and Governance Structure
LFP’s community and governance structure is designed to address
several goals. First, create a community that is welcoming and
inclusive where faculty and students of all backgrounds feel
comfortable participating. A mission statement, a vision statement,
a code of conduct, and contributor guidelines were drafted to reflect
the community’s goals. These are reflective of agile values and
FOSSisms and intend to help guide community interactions and
decisions in the future.

Second, quickly onboard and embed instructors, not just their
students, into the LFP community. To this end we request that
instructors join the Coordinating Committee and attend and
participate in its weekly meetings. This gives instructors immediate
and regular access to other faculty who are or have worked on an
LFP project. In these meetings they can quickly orient themselves
to the community's norms and practices as well as the community’s
current directions and how their course might contribute. This
committee becomes a multi-institutional support network that the
instructor can go to when they need help. In addition, the minutes
of the Coordinating Committee meetings are public, as is the issue
tracker they use to coordinate, giving new members a history of the
project and its decisions.

Third, create a governance framework that would give instructors
the power to shape the tools and the project to suit the needs of their
class. In exchange for joining and participating in the LFP
Coordinating Committee, we give the instructor the role of shop
manager with elevated privileges over the project(s) their
class/shop will be working on. This allows the Coordinating
Committee to quickly gain trust in shop managers, it gives new
shop managers instant access to other faculty who have used or are
using LFP projects in a class, and allows shop managers to help
guide the direction of the project so that it best suits their academic
needs and their clients' needs.

4.3 Workflow
The workflow is the process by which an individual or a group
organizes and coordinates to make contributions to a project. We
needed a workflow that would allow more than one shop/course
with one or more teams of developers to work on one or more
projects at a time. We also wanted the workflow to be flexible
enough that an instructor can customize it to fit the needs of their
course. In addition, we also want it to be possible for individuals
outside any shop to be able to contribute to the project as well.

LFP set up organizations on the two leading repository hosting
sites, GitHub and GitLab. GitHub was the initial choice because it
is widely known among students and faculty and is widely used by
open source projects. During the Spring 2019 term GitHub was
used by all three institutions to host code and issues. We based the
workflow on GitHub Flow [9]. In GitHub Flow, an individual
contributes a change by making a copy of the original upstream

project in GitHub (a fork), makes changes to the fork, and then
offers these changes back to the upstream project through a pull
request. All the while, contributors use the issue tracker in the
upstream project to coordinate their efforts. We adapted this
workflow for shops as follows: each team creates a team fork of the
upstream project and the shop manager is given privileges over the
upstream project to review and merge pull requests from teams.

By the end of the semester, two problems became clear. First, teams
had limited privileges over the issue tracker in the upstream project
and therefore could not help refine issues. Also, this constrained
teams’ ability to coordinate. Teams either used the issue tracker in
their forks, which causes confusion as there are now two issue
trackers to manage; or they used some other mechanism outside the
project, which the instructor could not easily monitor to assist
teams. Second, with teams having separate forks, the instructor and
the teams were less aware of the activities of other teams.

To address these issues, we wanted to have each shop (course) have
a single shop fork that all of its teams would use. This way the
instructor and the teams would be aware of all activity within the
shop. Also, we wanted the shop developers to have more privileges
over the issue tracker in the upstream project so that they can
participate more in the refining and coordinating activities, and
could use the issue tracker to help coordinate efforts within the
team. GitHub could not support this model.

Based upon the course experiences from Spring 2019, summer
research assistants from all institutions investigated the use of
GitLab as opposed to GitHub. During this investigation of GitHub
versus GitLab, three versions of these tools were compared: GitHub
Free, GitLab Free, and GitLab Gold. A feature table was created
that showed the similarities and differences of these platforms and
how the tools directly compared to each other. Most of the features
in GitHub are available in GitLab Gold, which also has a large
number of additional features that could be useful in developing
and maintaining the LFP projects.

In addition to the feature comparison, our proposed workflow for
LFP projects was modeled and tested on each platform. We found
that the basic proposed git workflow we would use for shops
worked similarly on all platforms. Along with testing the workflow,
other platform features were tested including project permission
levels and project boards for coordinating issues and work. We
found that GitLab offered better permission levels for managing
our different types of users and developers. We also found that
GitLab offered better project board systems for managing and
coordinating work. It was ultimately decided that the suite of LFP
projects would switch to using GitLab Gold (which is free to open
source projects) to host our repositories.

4.4 Communication
Finding a mechanism for students and faculty to communicate
within a course as well as across institutions is important to keep
the history of the project for future students and faculty. Students
(and faculty!) often do not default to working in the open, and

communication that does not originate on public channels rarely
becomes public after the fact.

During the Spring 2019 term all institutions used Slack with
channels for each individual institution as well as a general LFP
channel. There was little inter-institutional communication and
Slack was not widely used within courses either. Some general
issues with Slack are: it isn’t open source (although widely used by
open source projects), it isn’t accessible, potential contributors
must request access to a channel (lurking is not an option), and
students aren’t already using Slack in their lives, thus it became
another place they had to remember to check.

The Coordinating Committee and student researchers investigated
alternative communications platforms. Requirements included
being open source, accessible for those with vision or hearing
impairments, hosted, and allowing anyone to join/lurk without
approval. After looking at several options two were selected for
piloting: Gitter and Discord. Neither satisfied all our requirements.

While Gitter is open source and hosted, (and accessible through an
IRC bridge), its main problem is that the only way to join Gitter is
through an existing GitHub, GitLab or Twitter account. Because of
the lack of granularity in both GitHub and GitLab’s authentication
systems, Gitter requires access to all of a user’s repositories. While
Gitter promises not to use that access, the warnings are disturbing
enough that we believe that many would decline to use Gitter.

While Discord is not open source and not accessible, it provides a
number of positive features such as audio, video and screen sharing,
and many students are already users. The biggest concern with
Discord is that it is marketed as a gamer’s tool with many
references to gamer culture. This may evoke a negative response in
some students. It is possible to turn off some of the off-putting
features, but not all of them. The decision to switch to Discord is
accompanied by a plan to actively mitigate possible student
concerns by telling them that we are aware of its reputation, have
an actively enforced code of conduct, and will work to create a safe
and inclusive space. Research on students’ perceptions of the tool
will be conducted as well.

4.5 Reviewing Changes
Before accepting changes into a project, it's important that they are
carefully reviewed to ensure that they do not break the existing
system, implement what they purport to, are well designed, and
meet the project's quality standards. In a typical open-source project
this review process may take a long time as the maintainers may be
working on the project in their spare time. This is magnified if we
have a large number of students submitting changes to the project.
The first fix to this challenge is to have the shop manager
(instructor) review students’ work. The advantage is that the shop
manager understands their course’s need for timely reviews.

However, this brings a new challenge, how is the instructor
supposed to complete so many thorough reviews? An instructor
may want to have students review other students' work. Regardless
of who performs the review, it's important to automate as much of
the review process as possible.

The first technique to employ is automated testing. Shop developers
(students) must write automated tests to accompany their code as is
standard practice in modern agile development. These tests, along
with all previous tests, can be run regularly to check that new
changes work properly and do not damage existing functionality.

The next challenge is how does the reviewer know if the changes
under review will integrate properly with possible new changes in
the main development branch. The reviewer must merge the
proposed changes with the main branch and run the automated
tests. This too can be automated and is part of the practice of
continuous integration (CI). In CI, every time a developer makes
new changes, they are merged with the main branch into a
temporary branch, the automated tests are run on this merged
branch and the results are reported. The developer can then adjust
their work appropriately until their work successfully merges with
the main branch. Similarly, continuous deployment (CD) can be
used to automatically test if the merged copy can be successfully
installed and run within a known environment. If successful, this
deployed instance can be used by the reviewer to quickly manually
test new and existing features or to demo new features to a client!

Another important check that a reviewer must perform is to confirm
that the work being offered was created by the author offering the
work or was licensed in a way that is compatible with the project’s
license. This is very challenging and onerous for a project to check.
Increasingly, modern practice is to have developers sign-off on a
Developer Certificate of Origin [3] for each of their commits. The
developer’s sign-off asserts that they know where the work came
from, that they have the right to contribute the work to the project,
and that the work is licensed with a compatible license. This may
seem a lot to ask of a student, but brings the concepts of copyrights,
licensing, and plagiarism to the forefront of the discussion. The
reviewer must check that each commit has a sign-off. This check
can and should be automated.

Other checks can be automated to ensure that there is consistency
in the review process and to ease the reviewing burden for shop
managers. The shop manager or other shop members can focus on
reviewing essential but hard to automate characteristics like
verifying that the new automated tests actually test the new
changes, and that the new changes and tests are well designed.

4.6 Story Mapping
Currently LFP is a suite of projects with three clients with differing
requirements, and at least 5 instructors working on applications. As
more institutions and instructors participate in the project this will
increase. Can we unify these differing requirements into a single,
but flexible project? Students and faculty are unfamiliar with the
food pantry domain and a client’s needs, and clients may have a
difficult time articulating their requirements or envisioning ways in
which an application can help them beyond what they currently do
at their own food pantry. Left to their own devices, students want
to work on technical stories, as they are more familiar with and
interested in technical issues. Unfortunately, a deep dive into a
technical issue may result in code that does not benefit the client.

The instructors at the founding institutions are the most familiar
with the features that their own food pantries are requesting, but all
of the instructors need to have a broader view of these features, both
to help determine which features should be included in the future
unified project and to be able to suggest new features that their
clients may find useful but have not yet thought of.

With an eye toward eventually having the current apps converge to
a single app that has features that can be enabled or not based on
customer needs, the Coordinating Committee spent much of a day
in a story mapping [13] session. The goal was to share current and
future needs of our respective customers, develop consistent
terminology, and have all the instructors be aware of all possible
requirements and features. The story mapping session began with
the instructors enumerating user roles and how each user might
interact with the proposed systems. Tasks were laid out in a rough
timeline to show how a particular user might interact with the
system. The user(s) who might perform each task were listed above
each task, and details or alternate ways of doing that task were
placed below.

This story map is posted on the project’s website as a record of the
group’s current vision for the product. The plan is to walk each
client through the story map to get feedback about how the features
will meet their needs, and to familiarize them with features they
may not have considered. These client walk-throughs will likely
result in new feature requests that will be discussed and
incorporated in a future story mapping session.

5 CONCLUSION
The LibreFoodPantry community continues to tackle issues as we
prepare for our fall courses. The multi-institutional community has
provided momentum across campuses, as well as allowed us to
think deeply about issues that will impact the suite of projects. The
support system developed by the Coordinating Committee provides
a structure for new faculty, courses and institutions to become
involved with the community and its projects in a way that we have
not encountered before. With a wide variety of institutions, courses,
and faculty backgrounds working together, we are making it easier
for new faculty and students because we understand the difficulties
that may arise and are continually modifying what we do. Because
the community consists of multiple faculty, at multiple institutions
using LFP in courses across semesters, this model is sustainable
because the community will continue to grow as other institutions
participate.

We believe that engaging students in an HFOSS project that helps
their own, or other institution, will positively impact all students,
but especially women and traditionally underserved populations.

6 FUTURE PLANS
The LibreFoodPantry community is in the early stages of
developing food pantry applications and much work remains to be
done. Students at each of the three institutions will interact with
LFP in a variety of ways during the fall and spring terms. Faculty
at NCC will continue to develop a better understanding of the needs

of their campus food pantry by meeting with volunteers who run
the pantry and to develop activities to introduce students to the
project. Students will learn new communication models and tools,
encouraging inter-institutional communication, as well as how to
contribute to LFP using the agreed upon workflow. At WNE LFP
will be used in two different courses, a human-computer interaction
course and a software engineering course. During the fall term
teams of students will select different sections of the LFP story map
to work on. They will expand upon the existing ideas, perform
client validations, develop interaction models, and begin to sketch
out an appropriate interface. This work will inform the spring term
software engineering course. At WSU the capstone course which
utilizes LFP is offered only in the spring term. One student will be
working in the Fall to refine requirements, set up the build and
deploy infrastructure, and the high-level architecture design. The
student will evaluate the onboarding process, community tools,
workflow, and associated documentation developed as part of LFP.

The growth of the community is at the forefront of our efforts. We
will continue to develop documentation to ease the onramp for
faculty at other institutions who want their classes to participate in
LFP. Documentation for onboarding students, contribution
workflow, and assessment are of primary interest. Much of the
documentation for student participation will be developed as part
of the initial effort, but we understand that an influx of students
from different institutions and different courses is likely to require
a refinement of these documents. It is also hoped that individual
developers, who may or may not be students, will want to
contribute, providing the community with yet another perspective.
For a community to grow, it is important that the community be
open and welcoming to all, a tenet that always guides our decision-
making process. Sometimes those decisions are easy and at other
times much more difficult. Our decision regarding a
communication tool is an example of the latter. We carefully
considered our technical needs and settled on a tool, but were
concerned that aspects of the tool may have a negative impact on
student impressions of CS. Our decision was to turn this into a
research question and are especially interested in knowing the
impact on underserved populations. We are also interested in
exploring whether students have the same rewarding experience
when contributing to LFP as they do when contributing to a
traditional HFOSS project.

ACKNOWLEDGMENTS
This material is based on work supported by the National Science
Foundation under Grant Nos. DUE-1525039, DUE-1524877, and
DUE-1524898. Additional support provided by an Aisiku 2019
Undergraduate Summer Research Fellowship from the Worcester
State University Aisiku STEM Center. Thank you to GitLab for a
free GitLab Gold license through their GitLab Open Source
Program. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

REFERENCES
 [1] Grant Braught, John Maccormick, James Bowring, Quinn Burke, Barbara Cutler,

David Goldschmidt, Mukkai Krishnamoorthy, Wesley Turner, Steven Huss-
Lederman, Bonnie Mackellar, and Allen Tucker. 2018. A Multi-Institutional
Perspective on H/FOSS Projects in the Computing Curriculum. ACM Trans.
Comput. Educ. 18, 2, Article 7 (July 2018), 31 pages. DOI:
https://doi.org/10.1145/3145476

[2] Darci Burdge, Lori Postner, Heidi J. C. Ellis, and Gregory W. Hislop. 2014.
Preparing for student participation in HFOSS projects: FOSS tools and
techniques. J. Comput. Sci. Coll. 29, 3 (January 2014), 74-75.

[3] Developer Certificate of Origin, https://developercertificate.org/, accessed 2019-
08-19

[4] Heidi J.C. Ellis, Gregory W. Hislop, Josephine Rodriguez, and Ralph A. Morelli.
2012. Student Software Engineering Learning via Participation in Humanitarian
FOSS Projects. 119th Annual ASEE Conference and Exhibition (2012).

[5] Heidi J.C. Ellis, Michelle Purcell, and Gregory W. Hislop. 2012. An approach
for evaluating FOSS projects for student participation. In Proceedings of the 43rd
ACM technical symposium on Computer Science Education (SIGCSE '12).
ACM, New York, NY, USA, 415-420.

[6] Heidi J.C. Ellis, Stoney Jackson, Darci Burdge, Lori Postner, Gregory W. Hislop,
and Joanie Diggs. 2014. Learning within a professional environment: shared
ownership of an HFOSS project. In Proceedings of the 15th Annual Conference
on Information technology education (SIGITE '14). ACM, New York, NY, USA,
95-100. DOI: https://doi.org/10.1145/2656450.2656468

[7] Heidi J. C. Ellis, Gregory W. Hislop, Stoney Jackson, and Lori Postner. 2015.
Team Project Experiences in Humanitarian Free and Open Source Software
(HFOSS). Trans. Comput. Educ. 15, 4, Article 18 (December 2015), 23 pages.
DOI=http://dx.doi.org/10.1145/2684812

[8] Heidi J.C. Ellis, Gregory W. Hislop, Monisha S. Pulimood, Becka Morgan, and
Ben Coleman. 2015. Software Engineering Learning in HFOSS: A Multi-
Institutional Study. 122nd Association for Engineering Education Annual
Conference and Exposition (2015).

[9] GitHub Flow, https://guides.github.com/introduction/flow/, accessed 2019-08-
18

[10] Christoph Hannebauer, Matthias Book, and Volker Gruhn. 2014. An exploratory
study of contribution barriers experienced by newcomers to open source software
projects. In Proceedings of the 1st International Workshop on CrowdSourcing in
Software Engineering (CSI-SE 2014). ACM, New York, NY, USA, 11-14.
DOI=http://dx.doi.org/10.1145/2593728.2593732

[11] Gregory W. Hislop, Heidi J.C. Ellis, S. Monisha Pulimood, Becka Morgan,
Suzanne Mello-Stark, Ben Coleman, and Cam Macdonell. 2015. A Multi-
Institutional Study of Learning via Student Involvement in Humanitarian Free
and Open Source Software Projects. In Proceedings of the eleventh annual
International Conference on International Computing Education Research (ICER

'15). ACM, New York, NY, USA, 199-206. DOI:
https://doi.org/10.1145/2787622.2787726

[12] Gregory W. Hislop, Heidi J. C. Ellis, and Herman Jackson. 2018. Student
contribution to HFOSS: challenges and opportunities. J. Comput. Sci. Coll. 33, 6
(June 2018), 181-182.

[13] Jeff Patton, User Story Mapping: Discover the Whole Story, Build the Right
Product, O’Reilly Media, 2014.

[14] Lori Postner, Heidi J.C. Ellis, and Gregory W. Hislop. 2018. A Survey of
Instructors' Experiences Supporting StudentLearning using HFOSS Projects. In
Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (SIGCSE '18). ACM, New York, NY, USA, 203-208. DOI:
https://doi.org/10.1145/3159450.3159524

[15] Lori Postner, Darci Burdge, Heidi J. C. Ellis, Stoney Jackson, and Gregory W.
Hislop. 2019. Impact of HFOSS on Education on Instructors. In Proceedings of
the 2019 ACM Conference on Innovation and Technology in Computer Science
Education (ITiCSE '19). ACM, New York, NY, USA, 285-291. DOI:
https://doi.org/10.1145/3304221.3319765

[16] Michelle Purcell, Heidi J. C. Ellis, and Gregory W. Hislop. 2013. An
approach for evaluating open source projects for student participation. J.
Comput. Sci. Coll. 28, 6 (June 2013), 199-200.

[17] L. J. Sax, K. Lehman, J. A. Jacobs, A. Kanny, G. Lim, L. N. Paulson, and H.
Zimmerman. Anatomy of an Enduring Gender Gap: The Evolution of Women's
Participation in Computer Science.

[18] Igor Steinmacher, A. P. Chaves, T. U. Conte and M. A. Gerosa, "Preliminary
Empirical Identification of Barriers Faced by Newcomers to Open Source
Software Projects," 2014 Brazilian Symposium on Software Engineering,
Maceio, 2014, pp. 51-60. doi: 10.1109/SBES.2014.9

[19] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social Barriers Faced by Newcomers Placing Their First Contribution in
Open Source Software Projects. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW '15).
ACM, New York, NY, USA, 1379-1392. DOI:
https://doi.org/10.1145/2675133.2675215

[20] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. 2016. Overcoming open source project entry barriers with a portal for
newcomers. In Proceedings of the 38th International Conference on Software
Engineering (ICSE '16). ACM, New York, NY, USA, 273-284. DOI:
https://doi.org/10.1145/2884781.2884806

[21] Burçin Tamer, 2018. Helping Others is the Highest Rated Career Value for Both
Undergraduate and Graduate Students in Computing. Computing Research
News, 30, 10 (November 2018). https://cra.org/crn/2018/11/helping-others-is-
the-highest-rated-career-value-for-both-undergraduate-and-graduate-students-
in-computing/

[22] Allen Tucker. (2019). Client-Centered Software Development: The CO-FOSS
Approach. 10.1201/9780429506468.

